

Civil Engineering
Surveying
Water Resources Management
Water & Wastewater Engineering
Construction Management
Environmental Sciences
Landscape Architecture
Land Planning

CONCEPTUAL SEWER REPORT FOR THE PLATEAU DEVELOPMENT

Carson City, Nevada

Prepared for:

TAHOE IV LLC (MR. KEITH SERPA)
P.O. BOX 1724
CARSON CITY, NEVADA 89702

Prepared by:

Manhard Consulting, Ltd.
241 Ridge Street, Suite 400, Reno, NV 89501

Job No. TIVCCNV01
October 16, 2018

Exp: 12/31/18

TABLE OF CONTENTS

1	INTRODUCTION.....	3
1.1	PURPOSE OF STUDY.....	3
1.2	PROJECT LOCATION AND DESCRIPTION	3
2	METHODOLOGY AND ASSUMPTIONS.....	4
2.1	PIPE SIZING CRITERIA	5
3	CONCEPTUAL SEWER DESIGN RESULTS.....	6
3.1	SEWAGE GENERATION.....	6
3.2	PLATEAU DEVELOPMENT PIPE CAPACITY	7
3.3	MORGAN MILL LIFT STATION	7
4	CONCLUSIONS AND RECOMMENDATIONS	9
4.1	GENERAL CONSIDERATIONS	9
4.2	REGULATIONS AND MASTER PLANS	9
4.3	IMPACTS TO ADJACENT PROPERTIES	9
4.4	STANDARDS OF PRACTICE	9
5	REFERENCES	10

LIST OF FIGURES

FIGURE 1-1: PLATEAU DEVELOPMENT LOCATION MAP	4
--	---

LIST OF TABLES

TABLE 2-1: <i>SEWER SYSTEM MASTER PLAN UPDATE</i> WASTEWATER GENERATION RATES	5
TABLE 2-2: MINIMUM SEWER MAIN PIPE SLOPE.....	6
TABLE 3-1: EXISTING ZONING SEWAGE GENERATION	6
TABLE 3-2: PROPOSED PLATEAU DEVELOPMENT AND ZONE CHANGE SEWAGE GENERATION ..	6
TABLE 3-3: MORGAN MILL LIFT STATION CAPACITY	7
TABLE 3-4: LIFT STATION EMERGENCY STORAGE CAPACITY	8

EXHIBITS

EXHIBIT 1: FEMA FIRM

APPENDICES

APPENDIX A: SEWAGE GENERATION ESTIMATES

APPENDIX B: FLOWMASTER PIPE CAPACITY CALCULATIONS

ABBREVIATIONS

ac	Acre
ac-ft	Acre-feet
bgs	Below ground surface
CCMC	Carson City Municipal Code 2005
cfs	Cubic feet per second
d/D	depth to diameter ratio
EDU	Equivalent dwelling unit
FEMA	Federal Emergency Management Agency
FIRM	Flood Insurance Rate Map
ft	Foot
ft ²	Square foot
ft ³	Cubic foot
fps	Feet per second
GIS	Geographical Information System
gpm	Gallons per minute
gpd	Gallons per day
Max.	Maximum
Min.	Minimum
NV	Nevada
Q _p	Peak flow
RCBC	Reinforced Concrete Box Culvert
ROW	Right of Way
vel.	Velocity

1 INTRODUCTION

1.1 PURPOSE OF STUDY

This report presents the data, methodology, and results of a conceptual sewer design report for the Plateau Development tentative map and zone change to remainder parcels. Adjacent remainder parcels that are being rezoned to multi-family and General Commercial are included in the analysis.

Future Final Maps and final designs will incorporate detailed sewer modeling and design.

This report documents the existing and proposed sewerage conditions of the proposed project:

- Existing and proposed sewershed
- Existing and proposed sewer generation rates
- Existing and proposed zoning
- Compliance with Carson City Municipal Code 2005 (CCMC) and/or other applicable ordinances

1.2 PROJECT LOCATION AND DESCRIPTION

The Plateau Development project site is in eastern Carson City, south of U.S. Highway 50 around Drako Way, located in Township 15 North, Range 20 East in portions of Sections 1 and 12.

Sanitary sewer infrastructure does not currently exist at the subject site. The nearest sanitary sewer is an 8-inch sewer main at the east end of the Morgan Mill Road that connects to the Morgan Mill sewer lift station.

Figure 1-1 shows the location of the project site. The site is not located in a FEMA flood zone. Relevant FEMA flood maps define the area as *outside the 0.2% annual chance flood*. Exhibit 1 shows the FEMA flood zone mapping adjacent to the Plateau Development.

Figure 1-1: Plateau Development Location Map

[Google Maps: <https://www.google.com/maps/search/google+maps/@39.1897644,-119.7016629,4292m/data=!3m1!1e>; accessed 10/10/2018]

2 METHODOLOGY AND ASSUMPTIONS

The existing zoning at the Plateau Development site is General Industrial. The proposed zone change and tentative map include the following land uses that constitute the sewershed for the Plateau Development and the remainder parcels:

- 269 Single Family Residential lots on 67.89 acres
- 18.53 acres Multi-Family
 - Estimated 250 EDUs
- 13.81 acres General Commercial

Existing and proposed conditions sewage loading is estimated based on the 2017 *Sewer System Sewer Master Plan Update* (ATKINS, 2017). Loading estimates are calculated using the unit rates in Table 2-1.

This conceptual sewer study for the Plateau Development adheres to the Carson City Municipal Code 2005 (CCMC) requirements for conceptual sanitary sewer preliminary design 12.06.360.

Table 2-1: Sewer System Master Plan Update Wastewater Generation Rates

Land Use Category	Average Dry Weather Flow	Units
<i>Single-Family Residential</i>	148	(gpd/DU)
<i>Multi-Family Residential</i>	123	(gpd/DU)
<i>Office</i>	269	(gpd/acre)
<i>Commercial</i>	443	(gpd/acre)
<i>Hotel/Resort/Casino Hotels/Motels</i>	62	(gpd/room)
<i>Industrial</i>	189	(gpd/acre)
<i>Institutional</i>	1,127	(gpd/acre)
<i>School</i>	158	(gpd/acre)
<i>Prison</i>	366	(gpd/acre)
<i>Hospital</i>	2,333	(gpd/acre)

Sewage generation estimates do not include wet weather flows. This assumption is based on construction of new infrastructure, segregation of the sewer system from stormwater infrastructure, and groundwater at 100 feet bgs.

A peaking factor of 1.5 was used for average daily to average peak hourly flow (ATKINS, 2017).

2.1 PIPE SIZING CRITERIA

Pipe sizing will conform to the Carson City Municipal Code Division 15.3.2 for sewer design criteria.

- Sewer capacity when peak flow is at $d/D = 0.75$
- Min. diameter for sewer mains is 8-inches
- Min. design velocity is 2 fps
- Max. design velocity is 10 fps

Minimum slope for sewer main pipe shall be per Table 2-2.

Table 2-2: Minimum Sewer Main Pipe Slope

<i>Diameter (in)</i>	<i>Minimum Slope</i>
8	0.4% ¹
10	0.25%
12	0.19%
15	0.14%

¹Minimum slope for 8" PVC SDR-35 flexible pipe

3 CONCEPTUAL SEWER DESIGN RESULTS

This section discusses the results of the proposed conditions sewage generation, onsite and offsite pipe capacity, and the Morgan Mill lift station capacity.

3.1 SEWAGE GENERATION

The estimates for the existing zoning and proposed Plateau Development flows are contained in Appendix A. The methodology and assumptions are included in the calculated estimates. Table 3-1 summarizes the existing zoning and proposed conditions sewage generation.

Table 3-1: Existing Zoning Sewage Generation

<i>Land Use Category</i>	<i>Sewage Loading (gpd)</i>	
	<i>Ave. Day</i>	<i>Peak Hourly</i>
General Industrial	21,298	31,948

Table 3-2 summarizes the proposed sewage generation values.

Table 3-2: Proposed Plateau Development and Zone Change Sewage Generation

<i>Land Use Category</i>	<i>Sewage Loading (gpd)</i>	
	<i>Ave. Day</i>	<i>Peak Hourly</i>
Single Family (SF6)	39,812	59,718
Multi-Family	30,750	46,125
General Commercial	6,029	9,044
Park/Open Space	0	0
Total	76,591	114,887

The proposed conditions will increase the average day sewage loading by 55,333 gpd.

3.2 PLATEAU DEVELOPMENT PIPE CAPACITY

Pipe capacity has been estimated for the single family residential for average daily flow and peak hourly flow. The results show that the average day and peak hourly flow are contained below the maximum 0.75 d/D ratio for 8-inch PVC pipe at the minimum slope of 0.4%. Flow capacity estimate results for 8-inch PVC pipe at 0.4% slope are summarized as follows:

- $d/D=16.9\%$ for SFR ADF=27.6 gpm
- $d/D=20.6\%$ for SFR PHF=41.5 gpm

Design velocity is less than 2 fps for both ADF and PHF at 1.6 fps and 1.8 fps, respectively. This indicates that pipe will need to be designed at slopes greater than the minimum specified in the CCMC.

The manning's normal depth calculations are included in Appendix B.

The 2017 *Sewer System Sewer Master Plan Update* includes a full buildout analysis for sewer mains and assesses the capacity for potential future deficiencies (ATKINS, 2017). This buildout condition pipeline deficiency reports the sewer mains, between the proposed Plateau Development and the Morgan Mill Lift Station, as less than d/D 0.50. This implies that the loading from the Plateau Development and associated remainder parcel zone changes would not pose a sewer main capacity issue.

3.3 MORGAN MILL LIFT STATION

The sewer loading from the Plateau Development and related zone change remainder parcels flow to the Morgan Mill Lift Station. The information presented in this section was taken from the 2017 *Sewer System Sewer Master Plan Update* (ATKINS, 2017).

The *Sewer System Sewer Master Plan Update* reports the following for the Morgan Mill Lift Station.

Table 3-3: Morgan Mill Lift Station Capacity

Lift Station	Pump Capacity (gpm)	Dry Weather (gpm)	
		Existing Q_p	Buildout Q_p
Morgan Mill	450	483	897

Carson City staff and the *Sewer System Sewer Master Plan Update* report that the lift station pump is currently undersized for the existing flows. This indicates that the pumps will have to be upgraded with, or without, additional loading from the Plateau Development.

The force main is also experiencing low velocity per the *Sewer System Sewer Master Plan Update*. The lift station wet well has sufficient volume for existing flows and reportedly has issues with the sewage going septic. Additional flows from the proposed Plateau Development would help increase the cycle times at the lift station.

Table 3-4: Lift Station Emergency Storage Capacity

Lift Station	Dry Weather				
	Emergency Storage (gal)	Existing Q_p (gpm)	Existing Storage (hrs)	Buildout Q_p (gpm)	Existing Storage (hrs)
Morgan Mill	9,800	483	0.34	897	0.18

Assuming that the 80 gpm peak hour sewage loading from the Plateau Development coincides with the master plan existing peak flow, then the emergency storage time decreases to 0.29 hours.

4 CONCLUSIONS AND RECOMMENDATIONS

4.1 GENERAL CONSIDERATIONS

This study is intended to be a preliminary sewer analysis in support of the Plateau Development tentative map and remainder parcel zone changes. Further progress towards a final design of the Plateau Development site will include a master technical sewer report specific to the final site design.

This preliminary sewer design report shows that onsite and offsite sewer mains will have capacity.

The Morgan Mill Lift Station pumping capacity is less than the existing conditions peak flow. Loading from the Plateau Development would increase this discrepancy. However, the *2017 Sewer System Sewer Master Plan Update* identifies that the lift station pumping capacity does not meet the existing peak flow.

4.2 REGULATIONS AND MASTER PLANS

The proposed improvements and the analyses presented herein are in accordance with Carson City Municipal Code 2005.

4.3 IMPACTS TO ADJACENT PROPERTIES

There are no impacts to adjacent properties regarding sanitary sewer.

4.4 STANDARDS OF PRACTICE

This study was prepared using the degree of care and skill ordinarily exercised, under similar circumstances, by reputable professional engineers practicing in this and similar localities.

5 REFERENCES

Carson City Municipal Code. (2005).

https://library.municode.com/nv/carson_city/codes/code_of_ordinances?nodeId=CA_NEMUCO2005

ATKINS. (2017). Sewer Master Plan Update Final Report. Job No. 100052963.
Reno, NV: Brian Janes, P.E.

Exhibit 1: FEMA FIRM

四

SPECIAL FLOOD INUNDATION BY 1%	
annual chance flood (100-year flood)	is the area subject to flooding
1% chance area	is the area subject to flooding
Base Flood Elevation	is the water surface elevation at which the water level is expected to be exceeded 1% of the time within a 50-year period
No Base Flood Elevation	Base Flood Elevation determined by one of the following methods:
	1. Flood depths of 1 ft. above ground surface
	2. Flood depths of 1 ft. above the 1% chance area
	3. Flood depths of 1 ft. above the 1% chance area, plus the average depths determined by one of the following methods:

FLOODWAY AREAS	
Special Flood Hazard Areas	Areas where flooding is likely to be greater than to property not subject to a greater flood.
9A	Area to be protected from flooding determined by the following:
	Coastal flood zone
	W increases in flood height.
FLOODPLAIN AREAS	
	W is the character of a stream or watercourse or of an embankment or of a flood.
OTHER FLOOD REGIONS	
	Areas of 0.2% chance of flooding with average depths of 1 foot or more in a 20-year period.
OTHER AREAS	
	Areas determined to be areas in which flood
	COASTAL BARRIER

ALFRED INSURANCE PROGRAM

14

1

locations in the file to be converted to digital format by the [Nikon NEF2A](#) or [NEF2B](#) software.

For further information, call 41-890-288-5616, or visit our website at www.erm.com.

四

Social Flood Hazard	Chance flood by identified, Zone AR being restored to prevent greater flood.
99	Area to be protected flood protection system determined.
	Coastal flood zone. Elevation determined.
	Coastal flood zone. Elevation determined.

OTHER FLOOD AREAS	Areas of 0.2% annual chance of flooding, and areas in which flood heights are determined by the 100-year flood.
OTHER AREAS	Areas determined to be areas in which flood
COASTAL BARRIERS	

```

graph TD
    Start[otherwise] --> Variables[variables and CPAs are normally for]
    Variables --> OnePercent[1% are]
    OnePercent --> TwoPercent[0.2% are]
    TwoPercent --> Foodstuff[Foodstuff]
    Foodstuff --> ZoneD[Zone D]
    ZoneD --> CPAs[CPAs as]
    CPAs --> BasisR[Basis R]
    BasisR --> BaseF[Base F]
    BaseF --> BaseI[Base I]
    BaseI --> BaseP[Base P]
    BaseP --> Start
  
```

Lead to the North American Vegetation

(33)

30°-32°22'30"N
75°-77°30'W
1000-m
5000-ft
system
Bench this file

M1-5
 City Planning Dept., 2621 North
 available for tra
 INT
 FLOOD HAZARD
 FLOOD INSUR
 FLOOD INSUR
 March 16, 1989
 March 16, 1989
 See
 16, 16, 2009-10 add and update
 Flood Hazard and to incorporate prev
 River M

PROGRAM

PA
(SERIAL
NUMBER
C-4885)

National
use
DOI

5

1

ENC
Base Flood Enclosures are encouraged to be located on the upland areas of Spillwater River. The (FIRM) report that according to the (FIRM) information, the sole source of flood information is the FIRM for pur-

Users of DAVID 88, Users of DAVID 88, are also provided with an Insurance Study Library of Stillwater Environmental management this FIRM.

Protection Measure
in flood control is
was Universal Transverse
NAD83, or
was in or UTM zones
result in slight
boundaries. These of
North American
compared to structur
datum. For in
Vertical Datum
visit the National

Information for
bene-
fit
on Services Branch
visit its web
site in digital format by

information from aerial photographs and channel configuration. The firm may have various FIRMs, each showing different configurations of channels in the flood plain. The data may reflect this map.

an overview map
88-9616 for information concerning the
available products may be obtained by contacting the
Insurance Study and Service Center at <http://www.msc.fca.com>
EMA MAP (1-877-234-2343)

1

1

Appendix A: Sewage Generation Estimates

241 Ridge Street, Suite 400, Reno, Nevada 89501
(775)746-3500

PLATEAU TENTATIVE MAP

Goal:

Estimates of proposed sewage generation for Plateau based on the tentative map and adjacent zone changes.
Estimates of existing sewage generation for site based on the existing zoning.

Assumptions:

- Based on Table 5-4 Carson City Sewer Master Plan Update July 2017
- Assume no groundwater infiltration
- Assume no raw acreage offset
- Peaking Factor per Table 5-1 Carson City Sewer Master Plan Update July 2017

Average Loading

Single Family Residential=	148 gpd /EDU
Duplex=	148 gpd /EDU
Apartments/Multi-Family (MF)=	123 gpd /EDU
Office=	269 gpd /ac
Commercial=	443 gpd /ac

Peaking Factor= 1.5 Average Day to Peak Hourly

Average Loading

Hotel/Resort/Casino Hotels/Motels=	62 gpd /room
Industrial=	189 gpd /ac
Institutional=	1127 gpd/ac
School=	158 gpd/ac
Prison=	366 gpd/ac
Hospital=	366 gpd/ac

Zoning	EDUs	Average Day		Peak Hourly	
		GPD	GPM	GPD	GPM
21,298	0	21,298	15	31,948	22

Existing Zoning	Acres	Lots (EDUs)	Description	Zoning	Average Day		Peak Hourly	
					EDUs	GPD	EDUs	GPD
General Industrial	112.69				21,298	15	31,948	22

Plateau TM and Zoning Change Estimate	Acres	Lots or EDUs	Description	Zoning	Average Day		Peak Hourly	
					EDUs	GPD	EDUs	GPD
Park/Common Open Space	23.4		Desert landscaping		0	0.0	0	0.0
Single Family Residential	67.89	269		SF6	269	39,812	27.6	59,718
Multi-Family (MF)	18.53	250		MF	250	30,750	21.4	46,125
General Commercial	13.61			GC		6,029	4.2	9,044
					76,591		53	114,887
								80

Calculations

SFR or MF Loading: Ave. GPD=EDU*gpd/EDU
Commercial, Industrial, Office, Institutional, School, Prison, or Hospital Loading: Ave. GPD=Acres*gpd/Acre
Sewer Loading

Table 5-4 summarizes the average calibrated wastewater unit generation rates categorized by land use and the recommended values for us in future planning and forecasting on wastewater flows. The unit wastewater generation rates for each land use type were primarily determined from using water usage data for the month of February 2016 and assuming a 100% return-to-sewer ratio. Winter water usage is assumed to only include indoor water use, therefore water rates, in theory, are typically considered to equal wastewater flows. These values were further refined with the flow metering data. In addition to the flow from sewer sources, significant groundwater infiltration was observed throughout the City. As discussed in **Section 5.3.2**, it is estimated that approximately 24.3 gallons/acre of developed land, on average, infiltrated into the sewer system.

Table 5-4 Calibrated and Recommended Future Wastewater Unit Generation Rates

Land Use Category (Land Use Unit)	Unit	Average Flow from Sewer Sources (Qs)	Total Flow, Q _T (Q _S + Q _{GW})
Single-Family Residential	(gpd/DU)	148	219
Multi-Family Residential	(gpd/DU)	123	140
Office	(gpd/acre)	269	467
Commercial	(gpd/acre)	443	708
Hotel/Resort/Casino Hotels/Motels	(gpd/room)	62	68
Industrial	(gpd/acre)	189	564
Institutional	(gpd/acre)	1,127	1,452
School	(gpd/acre)	158	392
Prison	(gpd/acre)	366	463
Hospital	(gpd/acre)	2,333	2,686

Table 5-1 Temporary and Permanent Flow Metering Summary

Meter Name	Meter Type	Average Daily Flow (mgd)	Average Hourly Peak Flow (mgd)	Sewer Peaking Factor
Meter 01	Temporary	0.740	1.036	1.4
Meter 02	Temporary	2.016	2.744	1.4
Meter 03	Temporary	2.212	2.877	1.3
Meter 04	Temporary	1.169	1.367	1.2
Meter 05	Temporary	0.076	0.112	1.5
North Lift Station Meter	Permanent	4.129	5.671	1.5
Headworks Meter	Permanent	6.557	8.012	1.2

Notes:

- Permanent and temporary meter data was collected during February 16 to March 9, 2017.
- The data excludes metered data collected during February 20, 22 and March 5 due to the influence of wet weather flows. Refer to **Section 5.3.3** for a general discussion on wet weather flow analysis.

Appendix B: FlowMaster Pipe Capacity Calculations

TIVCCNV01 Plateau Development Average Daily Flow Capacity

Project Description

Friction Method	Manning Formula
Solve For	Normal Depth

Input Data

Roughness Coefficient	0.010
Channel Slope	0.40 %
Diameter	8.00 in
Discharge	27.60 gal/min

Results

Normal Depth	1.35	in
Flow Area	0.04	ft ²
Wetted Perimeter	0.56	ft
Hydraulic Radius	0.83	in
Top Width	0.50	ft
Critical Depth	0.11	ft
Percent Full	16.9	%
Critical Slope	0.00400	ft/ft
Velocity	1.58	ft/s
Velocity Head	0.04	ft
Specific Energy	0.15	ft
Froude Number	1.00	
Maximum Discharge	1.07	ft ³ /s
Discharge Full	0.99	ft ³ /s
Slope Full	0.00002	ft/ft
Flow Type	SubCritical	

GVF Input Data

Downstream Depth 0.00 in
Length 0.00 ft
Number Of Steps 0

GVF Output Data

Upstream Depth	0.00	in
Profile Description		
Profile Headloss	0.00	ft
Average End Depth Over Rise	0.00	%
Normal Depth Over Rise	16.86	%
Downstream Velocity	Infinity	ft/s

TIVCCNV01 Plateau Development Average Daily Flow Capacity

GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	1.35	in
Critical Depth	0.11	ft
Channel Slope	0.40	%
Critical Slope	0.00400	ft/ft

TIVCCNV01 Plateau Development Peak Hourly Flow Capacity

Project Description

Friction Method	Manning Formula
Solve For	Normal Depth

Input Data

Roughness Coefficient	0.010
Channel Slope	0.40 %
Diameter	8.00 in
Discharge	41.50 gal/min

Results

Normal Depth	1.65	in
Flow Area	0.05	ft ²
Wetted Perimeter	0.63	ft
Hydraulic Radius	0.99	in
Top Width	0.54	ft
Critical Depth	0.14	ft
Percent Full	20.6	%
Critical Slope	0.00392	ft/ft
Velocity	1.78	ft/s
Velocity Head	0.05	ft
Specific Energy	0.19	ft
Froude Number	1.01	
Maximum Discharge	1.07	ft ³ /s
Discharge Full	0.99	ft ³ /s
Slope Full	0.00003	ft/ft
Flow Type	SuperCritical	

GVF Input Data

Downstream Depth 0.00 in
Length 0.00 ft
Number Of Steps 0

GVF Output Data

Upstream Depth	0.00	in
Profile Description		
Profile Headloss	0.00	ft
Average End Depth Over Rise	0.00	%
Normal Depth Over Rise	20.61	%
Downstream Velocity	Infinity	ft/s

TIVCCNV01 Plateau Development Peak Hourly Flow Capacity

GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	1.65	in
Critical Depth	0.14	ft
Channel Slope	0.40	%
Critical Slope	0.00392	ft/ft